Polynomials and Factoring
Worked Examples
Some Special Formulas
The formulas below are useful when factoring or expanding polynomial expressions.
Difference of squares: | $X^2-Y^2=(X+Y)(X-Y)$ |
Perfect square (sum): | $(X+Y)^2=X^2+2XY+Y^2$ |
Perfect square (difference): | $(X-Y)^2=X^2-2XY+Y^2$s |
Cube of a sum: | $(X+Y)^3=X^3+3X^2Y+3XY^2+Y^3$ |
Cube of a difference: | $(X-Y)^3=X^3+3X^2Y-3XY^2-Y^3$ |
Sum of cubes: | $X^3+Y^3=(X+Y)(X^2-XY+Y^2)$ |
Difference of cubes: | $X^3-Y^3=(X-Y)(X^2+XY+Y^2)$ |
Example. Factor $9y^2-12y+4$.
Rewriting the expression,
$$9y^2-12y+4=(3y)^2-2(2)(3y)+(2)^2$$
We see that it fits the perfect square formula using $3y$ and $2$, so we get:
$$9y^2-12y+4=(3y-2)^2$$.